Supramolecular Functionalities Influence the Thermal Properties, Interactions and Conductivity Behavior of Poly(ethylene glycol)/LiAsF6 Blends

نویسندگان

  • Jui-Hsu Wang
  • Chih-Chia Cheng
  • Oleksii Altukhov
  • Feng-Chih Chang
چکیده

In this study, we tethered terminal uracil groups onto short-chain poly(ethylene glycol) (PEG) to form the polymers, uracil (U)-PEG and U-PEG-U. Through AC impedance measurements, we found that the conductivities of these polymers increased upon increasing the content of the lithium salt, LiAsF6, until the Li-to-PEG ratio reached 1:4, with the conductivities of the LiAsF6/U-PEG blends being greater than those of the LiAsF6/U-PEG-U blends. The ionic conductivity of the LiAsF6/U-PEG system reached as high as 7.81 × 10 S/cm at 30 °C. Differential scanning calorimetry, wide-angle X-ray scattering, Li nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy revealed that the presence of the uracil groups in the solid state electrolytes had a critical role in tuning the glass transition temperatures and facilitating the transfer of Li ions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and Thermal Properties of Novel Biodegradable ABCBA Pentablock Copolymers from Poly (Ethylene glycol), L-Lactide and p-Dioxanone

In this work, new biodegradable ABCBA type pentablock copolymers with different mole ratio of L-lactide and PPDO-b-PEG-b-PPDO triblock copolymer were synthesized and characterized. In the first step, PPDO-b-PEG-b-PPDO triblock copolymer was synthesized via a ring-opening polymerization of P-DiOxanone (PDO) monomer with Poly (Ethylene Glycol) (P...

متن کامل

Hybrid nanofluid based on CuO nanoparticles and single-walled Carbon nanotubes: Optimization, thermal, and electrical properties

The purpose of this study is to use the thermal and electrical conductivities of copper oxide nanoparticles and carbon nanotubes for the preparation of high-performance nanofluids for achieving better heat transfer properties. These nanofluids consist of a water/Ethylene Glycol solution containing single-wall carbon nanotubes (SWCNTs) and copper oxide nanoparticles (CuONPs). The effects of such...

متن کامل

Experimental investigation and proposed correlations for temperaturedependent thermal conductivity enhancement of ethylene glycol based nanofluid containing ZnO nanoparticles

Experimental study of effective thermal conductivity of ZnO/EG nanofluid is presented in thisresearch. The nanofluid was prepared by dispersing Zno nanoparticles in ethylene glycol using asonicator and adding surfactant. Ethylene glycol based nanofluid containing ZnO nanoparticlewith a nominal diameter of 18 nm at different solid volume fractions (very low to high) atvarious temperatures was ex...

متن کامل

Experimental Investigation on the Thermal Conductivity and Viscosity of ZnO Nanofluid and Development of New Correlations

In this paper, the measurement of the viscosity of ZnO in ethylene glycol, propylene glycol, mixture of ethylene glycol and water (60:40 by weight), and a mixture of propylene glycol and water (60:40 by weight) and the thermal conductivity in ethylene glycol and propylene glycol as base fluids in the range of temperature from 25 ºC to 60 ºC are investigated. The results indicate that as the tem...

متن کامل

Thermal Conductivity of Reduced Graphene Oxide by Pulse Laser in Ethylene Glycol

Graphene oxide was prepared using modified Hummers method. Stable ethylene-glycol nanofluids containing graphene oxide nanosheets were provided. Nd: YAG pulsed laser was applied to prepare reduced nanofluids. Experimental results revealed that thermal conductivity of the nanofluids is increased with increasing the concentration of graphene oxide (GO) in ethylene glycol. The enhancement ratio of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013